
Overview
This n8n workflow automatically turns new cybersecurity news articles into short videos
and posts them to social media. It starts by reading articles (from an RSS feed) and filtering
for relevant cybersecurity content (using keyword checks like “attackers”, “data breach”,
“ransomware”, “VPN”, etc.). Matching articles are extracted from their HTML pages,
cleaned, and saved to Airtable (a cloud “spreadsheet-database”). An AI (OpenAI’s GPT-4)
writes a video script from each article, and that script is fed into the Pictory video API to
generate a video storyboard and produce a video. Finally, the video is posted to Instagram
and Facebook (via the Facebook Graph API) and to YouTube. Along the way, the workflow
adds affiliate product links to the content and uses AI to generate platform-specific titles
and captions.

Key tools and integrations include:
- Airtable: For storing and checking articles (with a Personal Access Token as
credentials[1]). The workflow uses “base” and “table” IDs to locate the right tables in your
Airtable base.
- Pictory API: An AI video generation service. The workflow obtains a Pictory access token
using client credentials and then calls Pictory’s storyboard/video endpoints[2].
- OpenAI (LangChain node): To generate the video script from the article and to create
social-media captions. GPT-4 is used in “chat” mode to craft engaging narratives and post
text.
- Facebook Graph API / Instagram API: The workflow posts videos to Instagram (business
account) and Facebook. This requires a Facebook Graph API OAuth credential (with
permissions for Instagram content publishing).
- YouTube API: To upload the video to a YouTube channel. The YouTube node in n8n uses
Google OAuth credentials.

Throughout the workflow, n8n nodes pass data from step to step. “Set” (Edit Fields) nodes
store or rename fields, “If” nodes check conditions (using regex on article text), and
“Merge” nodes combine or filter item streams. All steps run automatically once
configured, so new articles are processed end-to-end without manual intervention.

Workflow Structure
The workflow is organized into several phases. Each node is labeled by name and type,
with arrows showing data flow.

• Triggers:
• RSS Feed Trigger (n8n RSS Trigger): Starts the flow when new items appear in the

Hacker News RSS feed (actually TheHackerNews.com feed).

https://docs.n8n.io/integrations/builtin/credentials/airtable/#:~:text=1,%60data.records%3Awrite
https://docs.pictory.ai/reference/authentication#:~:text=Authentication%20is%20done%20via%20client,would%20fetch%20an%20access%20token

• Schedule Trigger (n8n Schedule Trigger): Runs periodically (e.g. once a day) to
handle video-posting for articles already processed.

• Fetching and Filtering Articles:

• Hacker News RSS Read (RSS Feed Read node): Reads the RSS XML from
TheHackerNews.com. Each item has a title and link.

• Remove Duplicates (Remove Duplicates node): Drops any items whose link field
is identical to a previous one (avoids re-processing the same article).

• HTTP Request (HTTP Request node): Downloads the full HTML page of the article
using the link URL from the RSS item.

• Extract the Article from the HTML (HTML node): Uses a CSS selector
(div#articlebody.articlebody.clear.cf p) to extract all paragraph (<p>) text
from the article’s HTML. It outputs an array of paragraphs under
item.json.articlebody.

• Clean and Join the Article (Code node): Runs custom JavaScript to join the
paragraph array into one string (with double newlines between paragraphs). This
ensures item.json.articlebody is a single clean text field.

• Categorizing Content: The workflow applies several If and Set nodes in sequence
to tag each article. At each step, it checks the article text for certain keywords and
sets a “Category” field accordingly. If no keyword matches, the article is marked as
general or discarded. For example:

• If(Threats) (If node): Checks if articlebody contains words like “attackers”,
“threat actor”, “malicious”, etc. (regex, case-insensitive). If true, flow goes to:

o Edit Fields (Threats) (Set node): Sets Category = "Threats" and carries
forward the article text.
If false, flow goes to Edit Fields (General) which sets Category =
"General".

• IF (Data Breach Keywords): If the article text matches data-breach terms (“data
breach”, “leak”, “database breach”, etc.), a Set node tags Category = "Data
Breach".

• IF (VPN Keywords): Similarly, looks for VPN-related terms (“online privacy”,
“internet freedom”, etc.) and sets Category = "VPN".

• Edit Fields (Ransomware Category): (This node is oddly named “Ransomware
Category” but actually sets Category = "Hacked", presumably for
ransomware/hacking news.)

• IF (Main Filter - Cybersecurity Keywords) (If node): A final catch-all filter with
general cybersecurity terms (e.g. “cyber”, “data”, “attack”, “phishing”, etc.). If
false here, the article is considered non-cyber and is discarded (via an “Edit Fields
(Discard/Log Non-Cyber)” step). If true, the article passes to the next phase.

The connections (branching) ensure each article goes through these checks in order. The
use of multiple Set (Edit Fields) nodes allows tagging the article’s Category based on
which keyword group matched.

• Storing Articles & Avoiding Duplicates:
• Search Existing Article by Link (Airtable Search node): Before saving a new

article, this node queries the Airtable “Articles” table (Base ID appRrwVQOQiEYIKQc,
Table tblv6tIfwc2lJE5or) with a formula like FIND("{{ $json.link }}",
{link}). It checks if the exact link already exists in the table.

• Filter the Article Which Does Not Exist (Merge node): This “Merge” step takes the
output of the duplicate check and filters out articles that were found. It’s set to
“Keep Non-Matches”, so only new articles (not already in Airtable) continue.

• Remove Duplicates (Merge): After this check, a final “Merge all articles” node
combines all branches of new, filtered articles into one stream.

• Affiliate Links (Optional Product Promotion):
Several Set nodes add affiliate links for products (like 1Password, NordVPN, etc.).
These nodes copy product info (from fields or static values) into the item, and a
Switch node picks one. For example:

• 1Password Affiliate (Set node): Sets fields like Affiliate Product =
"1Password" and its affiliate URL.

• NordVPN Affiliate (Set node) and others do the same for their products.
• Switch to add affiliate links (Switch node): Routes the item down one branch

depending on some condition (like category or availability of affiliate data) so that
only one product is chosen.
After this, there’s Create Record in Airtable (Airtable node) with an “upsert”
operation: it writes the article data (title, link, category, product links, etc.) into
Airtable. Fields in the node are mapped to table columns (e.g. Title → fields.Title,
Category → fields.Category, etc.). Tip: Ensure the Airtable node’s base and table
IDs are correct and that field names match those in your base.

• Script Generation (OpenAI):

• Creating script (LangChain OpenAI node): This node calls GPT-4 (chat
completion) to write a video script from the article. It uses a system prompt like “Act
as a cinematic cybersecurity storyteller...” and a user message that includes the
article’s title, text, and link (using expressions like {{ $json.fields.link }}). The
output (in choices[0].message.content) becomes item.json.Video Script. If the
script is empty, the workflow will skip video creation later.

• Pictory Storyboard Creation:

• Get Pictory Access Token (HTTP Request node): Posts to
https://api.pictory.ai/pictoryapis/v1/oauth2/token with JSON

{"client_id":"...","client_secret":"..."} (using n8n generic credentials).
Pictory responds with an access_token (expires in 1hr)[2].

• Prepare Pictory Storyboard (Code node): For each item (article), this custom
JavaScript builds the Pictory “storyboard” JSON. It reads fields like title, Video
Script, Affiliate Product, etc., from the item. It splits the video script into
sentences and makes a “scene” for each sentence. Each scene is an object with
properties for Pictory (type: 'blockquote', content text, font settings, background
settings, etc.). If there’s an affiliate product, it inserts that as a final sentence/pitch.
The code also handles images: if an item.json.images array exists, it uses the first
image’s URL; otherwise it might insert a placeholder. The result is an object with
title, access_token, pictoryUserId, and storyboard.scenes ready for Pictory’s
API. (This code returns an array of items with this JSON.)

• Create Pictory Storyboard (HTTP Request node): Sends the JSON from the code
node to Pictory’s /v2/video/storyboard/render endpoint. The request includes
Authorization: Bearer {{ $json.access_token }} in the headers. Pictory
responds with a job_id.

• GET Pictory Video STATUS (HTTP Request node): Polls Pictory’s
/v2/video/{job_id} endpoint to check if the video is done.

• Check if Video is In-Progress (If node): Looks at the status from Pictory. If still
“processing”, the workflow goes to a Wait node (pause, then loop back to GET
status). If done, it proceeds.

• Get JobId (Set node): Extracts job_id to a separate field if needed.
• Updating video link (Airtable node): Once the Pictory video is complete, this node

updates the Airtable record (found via fields.ID or link) with the final video URL or
ID.

• Social Media Posting:

• Message a model (LangChain OpenAI node): Uses GPT-4 to generate social media
text. It is given the article title, text, and the video script, and a system prompt “You
are a social media expert…” instructing it to output a JSON-like structure with
captions for TikTok, Instagram, etc. For example, it outputs fields like
core_message, and under platform_captions has TikTok.title, TikTok.caption,
Instagram.caption, etc. These captions include hooks, hashtags, emojis, and calls
to action as per the system prompt.

• Search records1 (Airtable Search node): Triggered by schedule, this finds articles
in Airtable that have videoGenerated != "" but Status != 'Post'. (It limits to 2
records at a time.) These are videos ready to post.

• Adds link (Set node): Prepares data for downloading or posting. It may set fields
like upload_url or other tokens.

• Download video (HTTP Request node): Given the Pictory video link or ID, this node
downloads the video file. The output is binary video data. Make sure the node is set
to return binary (e.g. response as file).

https://docs.pictory.ai/reference/authentication#:~:text=Authentication%20is%20done%20via%20client,would%20fetch%20an%20access%20token

• Instagram post ready (HTTP Request node): Uses Facebook Graph API to create
an Instagram media container. It POSTs to
https://graph.facebook.com/v{version}/{IG_account_id}/media with
video_url={{$json.binary.video.data.url}} or the binary, and message text
from the OpenAI output. This step returns an id for the IG container.

• Instagram video posted (Facebook Graph API node): Calls the Facebook node
with Operation “Publish Media” (edge: media_publish) on the Instagram business
account using the container ID. This publishes the video to Instagram.

• Wait1 (Wait node): Pauses (e.g. 30 minutes) to let Instagram/Facebook process.
• YouTube video upload (YouTube node): Uses the YouTube integration node

(requires Google OAuth) to create a video resource with the title and description
from the AI captions. It returns an upload_url and videoId.

• upload video (HTTP Request node): Posts the binary video data to the upload_url
from YouTube. This actually uploads the file.

• Start the upload process (Facebook Graph API node): Begins an upload session
to a Facebook Page (ID 682680894939182 in this example). It POSTs to
/{page_id}/videos with upload_phase=start. The response has
upload_session_id and an endpoint to transfer.

• Wait2 (Wait node): Pauses again (e.g. a minute).
• Upload final to facebook (HTTP Request node): Completes the Facebook video

upload by posting chunks. In this example it sends the entire video (using
upload_phase=transfer) to the session. Once done, it will publish the video as a
Facebook Reel (/video_reels).

• Final Update:

• Merge1 (Merge node): Combines the results from Instagram, YouTube, and
Facebook branches.

• Update record (Airtable node): Updates the Airtable record with the final posted
URLs/IDs and sets Status = "Post" (or similar).

• Edit Fields1 (Set node): May adjust any remaining fields (e.g. ensure link is
correct).

• Sticky Note (Note node): A note left by the workflow author (not used for logic).

Each of these nodes is linked in the n8n editor by wires. Data flows through them as
described, with expressions (like ={{ $json.link }}) mapping outputs to inputs. The
structure is meant to be left-to-right in the n8n canvas, but is described here sequentially.
By following this flow, a cybersecurity article goes from RSS to a published video post with
minimal human intervention.

Setup Instructions
Follow these steps to configure the workflow before running it.

1. Airtable Credentials and Nodes
• Create an Airtable Personal Access Token (PAT): In Airtable’s “Developer Hub”

(see Airtable Support), create a new token. Give it a name (e.g. “n8n Workflow
Token”) and grant scopes data.records:read, data.records:write, and
schema.bases:read. Choose the base(s) you will use. Copy the generated token
value[1].

• Add Airtable Credential in n8n: In n8n’s Credential manager, create new “Airtable
API” credentials. Paste the PAT into the Access Token field. (Recent n8n versions
may ask for just “Airtable Personal Access Token”.) Save this credential (e.g. name
it “Airtable account”).

• Configure Airtable Nodes: In each Airtable node (Search, Create, Update), select
your Airtable credential and specify the Base ID and Table Name or ID. The base ID
is the string like appRrwVQOQiEYIKQc found in your base’s URL. The table ID (like
tblv6tIfwc2lJE5or) is also shown in the URL when viewing that table. For example,
the Search Existing Article by Link node uses Base appRrwVQOQiEYIKQc and Table
tblv6tIfwc2lJE5or (Articles). Ensure the field names in the node (e.g. Title, link,
Category) exactly match the column names in your Airtable table. Common
mistakes: forgetting to set the credential or mis-typing a Base ID will cause
“unauthorized” or “table not found” errors.

2. Pictory API Credentials
• Obtain Pictory API Client ID/Secret: Log into your Pictory account and find the API

credentials (client ID and client secret). Pictory supports client-credentials
OAuth[2]. (Contact Pictory support if unclear where to find these; they may be in an
“Integrations” or “API” section of the dashboard.)

• Add HTTP Credentials in n8n: In n8n’s credentials, create a HTTP Request with
Custom Auth credential (sometimes labeled Generic Credential). Paste the
client_id and client_secret as shown. In nodes like Get Pictory Access Token,
select this credential under HTTP Custom Auth. Ensure “Send Headers” is enabled
and that the token endpoint is correct
(https://api.pictory.ai/pictoryapis/v1/oauth2/token). This node will use your
ID/secret to fetch a bearer token. Common issue: If the token request fails, double-
check your client ID/secret and that “Content-Type: application/json” header is
sent (the node parameters should already include that).

3. OpenAI (ChatGPT) Credentials
• OpenAI API Key: Sign up at openai.com, get an API key for GPT-4 or GPT-4o. In n8n,

under Credentials create a new OpenAI credential and paste your key.

https://support.airtable.com/docs/creating-personal-access-tokens
https://docs.n8n.io/integrations/builtin/credentials/airtable/#:~:text=1,%60data.records%3Awrite
https://pictory.ai/
https://docs.pictory.ai/reference/authentication#:~:text=Authentication%20is%20done%20via%20client,would%20fetch%20an%20access%20token
https://openai.com/

• Configure LangChain Nodes: In the Creating script and Message a model nodes,
select your OpenAI credential. These nodes have preset prompts. You usually do
not need to modify them, but if you do, double-check the templating (it uses ={{ }}
to insert JSON fields). Common error: leaving the default system/user messages
unchanged, or mis-formatting the = in front of prompts.

4. Facebook Graph API (Instagram) Credentials
• Meta (Facebook/Instagram) OAuth: You need a Facebook App and a user/system

that has an Instagram Business Account connected to a Facebook Page. Follow
Meta’s docs to create an app, add Instagram Basic Display or Graph API, and get a
Page Access Token with the instagram_content_publish permission. In n8n, add a
Facebook Graph API credential using OAuth2, which will generate a token.

• Configure Facebook Graph Nodes: In the Instagram post ready and Instagram
video posted nodes, select your Facebook credential. Ensure the Node ID is set to
your Instagram business account ID (looks like 1784...) and the Edge to media or
media_publish. The Start the upload process (facebook) and Upload final to
facebook nodes are posting to a Facebook Page ID (682680894939182 in the
workflow); update that to your Page ID. Make sure your credential has permissions
to post videos to the page. A common pitfall is using a personal Instagram token
instead of a business account.

5. YouTube Credentials
• Google OAuth: Create credentials in the Google Cloud Console for YouTube Data

API. You need OAuth2 Client ID/Secret and enable the YouTube Data API. In n8n,
create a YouTube OAuth2 credential and go through the Google consent to
connect.

• YouTube Node Settings: In the YouTube video upload node, select the YouTube
credential. Map fields: set Title to ={{
$json.Choices.content.platform_captions.TikTok.title }} (or whichever
caption you want), and Description to the corresponding caption content (e.g.
TikTok or Instagram text). Uploading the video happens in two steps in n8n: the first
(YouTube node) generates an upload URL, and the next HTTP Request node sends
the binary data to that URL. Make sure Binary Data is mapped correctly (the output
from “Download video” is the binary). A typical error: not checking “Binary Mode” or
mismatched {{$json.upload_url}}.

6. Node-by-Node Tips
• RSS Feed Read: Just put the RSS URL

(https://thehackernews.com/feeds/posts/default). No auth needed.
• HTTP Request (Article): Set URL to ={{ $json.link }} so it fetches the link from

the RSS item. No auth needed.

https://developers.facebook.com/docs/instagram-api/getting-started
https://console.cloud.google.com/

• If Nodes: Double-check the regex list under Right Value. These must be a valid
JavaScript regex (or string with pipe-separated terms). If none match, the flow goes
to the “non-cyber” branch. Make sure Ignore Case is checked for case-insensitive
matching.

• Set (Edit Fields) Nodes: These simply assign constant or copied values. For
example, Edit Fields (General) has assignments Category = General, articlebody
= {{ $json.articlebody }}, link = {{ $json.link }}. That preserves the text
and link. In each Set node, ensure the field names match your data structure. A
common mistake is to accidentally delete an assignment or leave a field blank.

• Merge Nodes: Watch the join modes. For example, “Filter the Article which does
not exists” uses keepNonMatches, meaning it drops anything found in Airtable. Do
not accidentally set it to “merge all” or you’ll keep duplicates.

• Airtable Upsert: The Create or update node maps JSON fields (like {{
$json.title }}) to Airtable fields. Ensure you choose “Upsert” (if you want to
update existing records by unique key). If you only want to insert, use “Create” and
skip updating. The “cachedResultName” in some nodes shows the table name
(“CyberScripts”), which helps verify you’re writing to the correct table.

• Code Node (Clean and join): This node’s JavaScript concatenates an array into
text. If the CSS selector from HTML node returned multiple paragraphs, this joins
them. No config needed unless the HTML structure changes.

• Code Node (Prepare Storyboard): This must return valid JSON. It uses return
outputItems;. If something goes wrong (e.g. referencing a missing field like
videoScript), the output might be empty or throw an error. Ensure the previous
node indeed set Video Script. You can click “Execute Node” to test just the code
output. The styling (font URLs, sizes) in the code can be tweaked for your
preferences.

• If (Check Video Status): The condition probably checks if {{$json.status}} is not
"done" and repeats. Make sure it reads the correct field (from Pictory’s API
response).

• Wait Nodes: These use milliseconds. For example, Wait1 might be set to 1800000
for 30 minutes. Adjust if needed. The first Wait is for Instagram (give time for
processing), the second for Facebook upload (maybe a few seconds/minute).

• Facebook HTTP Nodes: The “Instagram post ready” (HTTP Request) must include
Authorization: OAuth <your_token>. In this workflow, the HTTP Request is set to
use “Send Headers” and the Facebook credential. It posts JSON with video_url
(link to the video file) and caption from AI. If you get OAuth errors, ensure your
token has the instagram_content_publish scope and the page is linked to an IG
business account.

• Facebook Graph API Node: For “Instagram video posted”, select the same
Facebook OAuth credential. Choose Node = Instagram account ID and Edge =
media_publish. A mistake here is using the wrong node ID. You can usually pick
these from a dropdown if the credential is valid.

• Upload final to Facebook (HTTP): This uses video_reels edge. Make sure the Page
ID is correct for your target. The body should include upload_session_id,
upload_phase=transfer, and the binary file chunk in the file parameter if needed.
In the workflow, it seems to do one chunk transfer of the entire file. If it fails, try
toggling “JSON/Multipart” options or check the Graph API format.

Throughout setup, frequently test each portion before moving on. n8n lets you run one
node at a time. Use the “Execute Node” feature and inspect the output. For example, after
the HTTP Request that fetches the article, open its output to verify the HTML was retrieved.
After each Set or If node, you can hover to see the JSON data passing through and confirm
fields are as expected.

Data Handling
This workflow transforms raw article text into a formatted Pictory storyboard and eventual
video. Here’s how the data is processed at key steps:

• Article Extraction: The HTML node grabs all <p> elements under the article’s main
content div. The code node then joins these paragraphs. This means
item.json.articlebody becomes a single string of text (with line breaks between
paragraphs). This is the full article text that later nodes use. If the HTML structure
changes (thehackernews redesigns, for example), you’d need to update the CSS
selector in the HTML node.

• Script Creation: The “Creating script” node sends a prompt like: “Here’s a
cybersecurity article. Turn this into a compelling video script.” It provides the article
title, category, and content to GPT-4. The output goes into item.json.Video
Script. (This is NOT automatically used by n8n; it’s a JSON field we access later in
the Pictory preparation code.) If the AI can’t generate a script, the code node will
skip that item (avoiding empty videos).

• Prepare Pictory Storyboard (Code node): This is the heart of data transformation.
In simple terms, it:

• Reads the Video Script (a long paragraph). Skips the item if it’s empty.
• Sanitizes the article title (articleTitle) for use as the video title.
• Truncates the script to 3000 characters (Pictory’s limit).
• Splits the script into sentences (split(/[\.!?\n]\s*/)), filtering out empty strings.
• Builds an array of scene objects, one per sentence. Each scene has:

o type: 'blockquote' (meaning it’s text on screen).
o Styling: white Roboto font, center-left, size 30.
o Text content (story) = the sentence.

o A background video query focused on “cybersecurity, hacking, network”,
etc. (Pictory will search stock videos matching these terms).

o If the sentence contains a product name (in code logic), it highlights
keywords (the code has a keywordColor).

o If this is the first scene (index 0), the scene title is the article title (big text).
• After mapping sentences, it checks if an Affiliate Product was set. If so, it inserts

an extra scene at the end saying something like “This video brought to you by
[Product]” with the product pitch and URL.

• It constructs outputItems with JSON: each item has { json: { title,
access_token, storyboard: { scenes } } }. These fields match what Pictory’s
API expects: a title, and a storyboard JSON with an array of scenes.

In sum, the code automatically turns the AI-generated script into a scene-by-scene plan.
Each scene’s background.query searches Pictory’s stock library for relevant visuals
(cybersecurity-themed). If you look closely at the code, you’ll see the
backgroundBrolls.searchFilter.keywords array with terms like "cybersecurity",
"hacking", etc., to guide the search. You can customize these keywords or styles by
editing the code node. Just be careful to maintain valid JSON output (see Debugging
below).

• Scene Objects: Each scene object in the storyboard JSON has this structure
(simplified example):

 {
 "type": "blockquote",
 "story": "First sentence of script.",
 "style": {
 "position": "center-left",
 "fontFamily": "Roboto",
 "fontSize": 30,
 "color": "rgba(255,255,255,1)",
 "keywordColor": "rgba(255,204,0,1)"
 },
 "background": {
 "type": "image",
 "settings": { "loop": true, "mute": true, ... }
 },
 "backgroundBrolls": [
 {
 "type": "video",
 "searchFilter": { "keywords": ["cybersecurity", "hacking", ...] }
 }
]
}

 When the code node returns these, the Create Pictory Storyboard HTTP node
sends them to Pictory, which then generates a video preview.

• Video Generation Loop: After sending the storyboard to Pictory, the workflow
periodically checks GET /v2/video/{job_id}. This returns a JSON with a status
field. If "InProgress", it waits (via the Wait node) and tries again. Once
"Succeeded", the video link is available (result.signedUrl) and is stored in
Airtable. This polling pattern is common for API jobs.

• Social Captions: The Message a model node uses a clever prompt so that the AI
outputs JSON. For example, it might return:

 {
 "role": "assistant",
 "content": {
 "core_message": "Attackers are exploiting software
vulnerabilities...",
 "platform_captions": {
 "TikTok": {
 "title": "Hacker Alert!",
 "caption": "Cyberattack rising! Learn how to protect
yourself... #cybersecurity"
 },
 "Instagram": { ... },
 "Twitter": { ... }
 }
 }
}

 The node has JSON Output enabled, so n8n parses this text as JSON. You can then
use expressions like
{{$json.choices[0].message.content.platform_captions.TikTok.caption}} in
later nodes to get the TikTok caption text. (In the YouTube node, the Title is set to
the TikTok title, for example.) This allows one AI step to craft messages tailored to
each platform.

• Publishing: After the video is ready, the workflow downloads the video binary and
uses Facebook/Instagram API calls and the YouTube node to post it. The video file is
passed as binary data through n8n by setting the “binary data” option in nodes and
referencing it (e.g. {{$binary.data}}).

Customization Tips
You can adapt or extend this workflow in several ways:

• Keywords and Filters: To change which articles are caught, edit the If nodes’
keyword lists. For example, to add a new category (like “Malware”), add a new

If+Set sequence with your chosen regex (e.g. /malware|virus/i). Or expand the
existing regex strings in the nodes. Use | to separate alternatives. Always test your
regex with some sample text to avoid syntax errors.

• Input Sources: Instead of TheHackerNews RSS, you could use a different RSS feed
or even an RSS Feed Trigger node. Simply replace the URL in the RSS Feed Read
node, or use a different trigger node. For example, use “RSS Feed Read Trigger” if
you want the flow to start on each new item automatically (the provided JSON
actually has an RSS Feed Trigger node at the end which can be enabled).

• New Platforms: To add TikTok, for example, you could insert steps after “Download
video” to POST the video to TikTok’s API (if a suitable API or n8n node exists). The AI
prompts can already generate a TikTok caption (see platform_captions.TikTok).
You would need your TikTok OAuth credentials and use HTTP Request to the TikTok
API. The structure shown for Instagram/Facebook can serve as a template.

• Affiliate Links: The workflow has 1Password, NordVPN, Malwarebytes, SurfShark
affiliates as examples. To add another product, duplicate one of those Set nodes,
update it with your product name and affiliate URL, and add it to the Switch node
logic. Then expand the GPT-4 prompts if needed to include that product’s context.

• AI Prompts: The prompts in the LangChain nodes are hard-coded but modifiable.
You could refine the tone (e.g. ask for humor or more detail). If you add new output
fields to the JSON format in Message a model, ensure you update how those fields
are consumed (e.g. if you add a “Twitter” caption, use
{{$json.platform_captions.Twitter.caption}}).

• Error Handling: You might want to branch flows on failures. n8n lets you add an
Error Trigger or catch errors in workflows. For example, if Pictory fails to make a
video, you could send a notification (Email or Slack) in a separate branch. To do
this, add an “Error Trigger” node and connect it.

• Auto-Upload Scheduling: Instead of a fixed wait, you could use a Schedule Trigger
for posting (e.g. “Run at 9am daily”). The provided “Schedule Trigger” does part of
this, pulling ready videos. You could also incorporate calendar checks or posting
quotas.

• Modularity: For a cleaner workflow, break parts into Sub-Workflows or use Execute
Workflow nodes. For example, put all “Social Posting” nodes in one sub-workflow
that you can reuse for different triggers.

• Logging: Enable the Keep output on error in settings to help debug by storing data
from failed executions. Or insert “Function” nodes with console.log() in code for
deeper investigation (you can view these logs in n8n’s Execution List).

Error Handling and Debugging
A few common issues and tips:

• Invalid JSON in Code Node: If the “Prepare Pictory Storyboard” code outputs bad
JSON, n8n will show an error like “The ‘JSON Output’ does not contain a valid JSON
object.” This usually means a typo in the JavaScript or a missing field. To debug,
copy your code into a JavaScript JSON validator or add console.log statements in
the code node (viewable in n8n’s execution logs) to inspect intermediate values.
Make sure you always return an array of items (even if empty). See n8n’s docs on
JSON output errors[3].

• Expression Errors: If an expression can’t find data (e.g. $json.Choices or
$json.fields.link), n8n may say “Cannot get value for expression” or
“Referenced node is unexecuted.” This means the previous node didn’t run or didn’t
produce the field. For example, if Creating script did not run (maybe it was skipped
due to a condition), but the code node tries to use $json['Video Script'], you’ll
see errors. To fix, test up to that point, and verify that each “parent” node was
executed (check the execution list). Also ensure the node order is correct (an
expression can only use data from nodes earlier in the flow). The docs suggest
checking if the referenced node has executed[4].

• Authorization Errors: A “401 Unauthorized” usually means a bad credential. For
Pictory, tokens expire every hour[2], so ensure you get a fresh token before each
request. The workflow calls Get Pictory Access Token each time it needs to talk
to Pictory. For Airtable, a 403 Forbidden often means the PAT lacks the right scope
or the base/table ID is wrong. Double-check your token’s scopes and that it has
access to the base [1]. For Facebook/Instagram, check that your OAuth token has
the instagram_content_publish and pages_read_engagement scopes and that
you’re using the correct IG Business Account ID. For YouTube, ensure the Google
credential has YouTube Data API enabled.

• Mismatched Data Items: Some nodes (like Merge) combine multiple inputs. If you
get a message about “item index mismatch” or similar, it may mean the arrays have
different lengths. For example, the Merge all articles node expects 5 inputs
(keywords branches), so if one branch had no items, ensure the merge is configured
to handle missing inputs (mode: 'append' or keepNonMatches). Also, if a code node
expects item.json.images but none was provided, it might break. In the Pictory
code, the author used a conditional: let imageUrl = item.json.images ?
item.json.images[0].url : placeholderImage; so it falls back if no images exist.
Always use such fallbacks if data might be absent.

• Debugging Tips:

• Use “Split In Batches” nodes to run a few items at a time and inspect outputs.

https://docs.n8n.io/code/cookbook/expressions/common-issues/#:~:text=To%20resolve%20this%2C%20make%20sure,you%20provide%20is%20valid%20JSON
https://docs.n8n.io/code/cookbook/expressions/common-issues/#:~:text=Can%27t%20get%20data%20for%20expression
https://docs.pictory.ai/reference/authentication#:~:text=Authentication%20is%20done%20via%20client,would%20fetch%20an%20access%20token
https://docs.n8n.io/integrations/builtin/credentials/airtable/#:~:text=1,%60data.records%3Awrite

• Insert Debug Note or Function nodes to log data. For example:
console.log(JSON.stringify(item.json, null, 2)); in a code node will print to
the workflow execution log.

• Check each node’s output panel: n8n displays all fields (JSON and binary). This is
invaluable for seeing if the right values (e.g. $json.Video Script) are set.

Best Practices
• Scalability: For high volume, consider splitting the workflow. For example, use one

workflow for “Fetch and store articles” and another for “Generate videos and post.”
You can chain them with Webhook or sub-workflow calls. This way you can run
them on separate schedules or even on different n8n instances. Use
SplitInBatches if needed to process many items without timing out.

• Error Tolerance: Use Try/Catch (Execute Workflow or IF Error) patterns. For
instance, surround external API calls (Facebook, Pictory) with branches that catch
failures. This prevents the whole workflow from stopping if one article fails.

• Credential Security: Store credentials only in the n8n credential store, not in
workflow parameters. Use least-privilege scopes (e.g. only give Airtable token
access to the needed bases[1]). Rotate tokens regularly. Do not hardcode secrets
in expression strings.

• Modularity: Group related tasks. For example, put the Pictory steps in a Sub-
Workflow that accepts the script and returns a video link. Then the main workflow
can call it via Execute Workflow. This makes testing and reuse easier.

• Monitoring: Use n8n’s built-in logging and consider integrating a notification on
failures (e.g. Slack or email).

• Documentation: Keep your field mappings and expressions documented. The
workflow itself is complex, so comments (Sticky Notes in n8n) are helpful for future
maintainers. For example, note why certain regex patterns were chosen.

• Version Control: Export and store your workflow JSON in version control (Git). This
JSON (the one provided) is the source file. When you update the workflow in n8n,
export it again to keep track of changes.

By carefully setting up each node with the right credentials and mappings, and by following
these tips, you can have this n8n workflow automatically fetch cybersecurity news, turn it
into engaging videos via AI, and publish across platforms—all with minimal manual effort.

Sources: Official documentation for Airtable PAT setup[1], Pictory API authentication[2],
and n8n expression debugging[3][4]. These provide guidance on token setup and common
error messages encountered in this flow.

[1] Airtable credentials | n8n Docs

https://docs.n8n.io/integrations/builtin/credentials/airtable/#:~:text=1,%60data.records%3Awrite
https://docs.n8n.io/integrations/builtin/credentials/airtable/#:~:text=1,%60data.records%3Awrite
https://docs.pictory.ai/reference/authentication#:~:text=Authentication%20is%20done%20via%20client,would%20fetch%20an%20access%20token
https://docs.n8n.io/code/cookbook/expressions/common-issues/#:~:text=To%20resolve%20this%2C%20make%20sure,you%20provide%20is%20valid%20JSON
https://docs.n8n.io/code/cookbook/expressions/common-issues/#:~:text=Can%27t%20get%20data%20for%20expression
https://docs.n8n.io/integrations/builtin/credentials/airtable/#:~:text=1,%60data.records%3Awrite

https://docs.n8n.io/integrations/builtin/credentials/airtable/

[2] Get Authentication Token

https://docs.pictory.ai/reference/authentication

[3] [4] Expressions common issues | n8n Docs

https://docs.n8n.io/code/cookbook/expressions/common-issues/

https://docs.n8n.io/integrations/builtin/credentials/airtable/
https://docs.pictory.ai/reference/authentication#:~:text=Authentication%20is%20done%20via%20client,would%20fetch%20an%20access%20token
https://docs.pictory.ai/reference/authentication
https://docs.n8n.io/code/cookbook/expressions/common-issues/#:~:text=To%20resolve%20this%2C%20make%20sure,you%20provide%20is%20valid%20JSON
https://docs.n8n.io/code/cookbook/expressions/common-issues/#:~:text=Can%27t%20get%20data%20for%20expression
https://docs.n8n.io/code/cookbook/expressions/common-issues/

